Data-Driven Approach for Modeling the Nonlane-Based Mixed Traffic Conditions

نویسندگان

چکیده

The diverse nature of vehicle categories and the resultant lane discipline in mixed (heterogeneous) traffic cause complex spatial interactions. As a result, driving behavior process conditions is meaningfully different, where both longitudinal lateral movements vehicles continuously occur. Under prevailing homogeneous developed countries, partially discrete, following outboard lane-change models can model behavior. However, established car-following cannot be directly used shaping conditions. Such also warrant use high-quality microlevel vehicular trajectory data. Accordingly, realizing this need, data for different flow were developed. to extract parameters required modeling vehicles’ positions using machine learning algorithms. Three supervised algorithms (k-NN, random forest, regression tree) deep are selected which influence identified Spearman correlation analysis. Furthermore, simulation runs performed python language. performance evaluated at microscopic macroscopic levels relevant indicators. results show that k-NN tend replicate better-mixed than forest trees.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Signal Controller for Mixed Traffic Conditions

Fuzzy logic has been widely used to develop an adaptive traffic signal controller because it allows qualitative modelling of complex systems. However, existing research has developed Fuzzy Logic Traffic Signal Controller (FLTSC) based on non-mixed traffic conditions. These FLTSC are not appropriate to the mixed traffic conditions of developing countries where the traffic streams consist of diff...

متن کامل

Neural network based vehicle-following model for mixed traffic conditions

Car-following behaviour is well studied and analyzed in the last fifty years for homogeneous traffic. However in the mixed traffic, following behaviour is found to vary based on type of lead and following vehicles. In this study, a neural network based model is proposed to predict the following behaviour for different lead and following vehicle-type combinations. Performance of the model is stu...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

application of several data-driven techniques for rainfall-runoff modeling

in this study, several data-driven techniques including system identification, adaptive neuro-fuzzy inference system (anfis), artificial neural network (ann) and wavelet-artificial neural network (wavelet-ann) models were applied to model rainfall-runoff (rr) relationship. for this purpose, the daily stream flow time series of hydrometric station of hajighoshan on gorgan river and the daily rai...

متن کامل

A Data-Driven Approach to Modeling Choice

We visit the following fundamental problem: For a ‘generic’ model of consumer choice (namely, distributions over preference lists) and a limited amount of data on how consumers actually make decisions (such as marginal preference information), how may one predict revenues from offering a particular assortment of choices? This problem is central to areas within operations research, marketing and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Advanced Transportation

سال: 2022

ISSN: ['0197-6729', '2042-3195']

DOI: https://doi.org/10.1155/2022/6482326